Home
Class 12
MATHS
Find (dy)/(dx), y=(sinx)^(cosx)+(cosx)^...

Find `(dy)/(dx),` `y=(sinx)^(cosx)+(cosx)^(sinx)`

Text Solution

Verified by Experts

Given that,
`y=(sinx)^(cosx)+(cosx)^(sinx)`
Taking log both side and we get,
`logy=log(sinx)^(cosx)+log(cosx)^(sinx)`
`=>log y=cosx*log sinx + sinx *log cos x`
On differentiating with respect to x and we get,
`d/(dx) logy=cosx d/(dx) log sinx+log sinx d/(dx) cosx+sinx d/(dx) log cosx+log cos xd/(dx)sinx`
`=>1/y(dy)/(dx)=cosx/sinx(cosx)+log sinx(-sinx)+sinx/cosx(-sinx)+logcosx cosx`
`=>1/y(dy)/(dx)=(cos^2x)/sinx -(sin^2x)/cosx-sinx log sinx+cosx log cosx`
`=>1/y(dy)/(dx)=(cos^2x)/sinx -(sin^2x)/cosx+cosx log cosx+sinx log sinx`
`=>1/y (dy)/(dx)=(cos^3x-sin^3x)/(sinx*cosx)+log*((cosx)^(cosx))/((sinx)^(sinx))`
`=>(dy)/(dx)=y[(cos^3x-sin^3x)/(sinx*cosx)+log*((cosx)^(cosx))/((sinx)^(sinx))]`
`=>(dy)/(dx)=(sinx)^(cosx)+(cosx)^(sinx)[(cos^3x-sin^3x)/(sinx*cosx)+log*((cosx)^(cosx))/((sinx)^(sinx))]`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIALS, ERRORS AND APPROXIMATIONS

    RD SHARMA|Exercise Solved Examples And Exercises|102 Videos
  • DIRECTION COSINES AND DIRECTION RATIOS

    RD SHARMA|Exercise Solved Examples And Exercises|67 Videos

Similar Questions

Explore conceptually related problems

Find (dy)/(dx) , if y=(sinx)^(cosx)

Find (dy)/(dx) , when: y=(sinx)^(cosx)

Find (dy)/(dx) , when: y=x^(sinx)+(sinx)^(cosx)

(dy)/(dx)=2(sinx-cosx)^(-2)

"If "y=(sinx)^(cosx)+(cosx)^(sinx)", prove that "(dy)/(dx)=(sinx)^(cosx).[cot x cos x-sin x(log sinx)]+(cosx)^(sinx).[cosx(log cos x)-sinx tanx].

(dy)/(dx)tany=sinx+cosx

Find (dy)/(dx)" when "y=(x^(5)-cosx)/(sinx) .

Find (dy)/(dx) when : y=(cosx)/(1+sinx)

"If "y=(x)^(cosx)+(sinx)^(tanx)", prove that "(dy)/(dx)=x^(cosx){(cosx)/(x)-(sinx)logx}+(sinx)^(tanx).{1+(log sinx)sec^(2)x}.

int(dx)/((sinx+cosx)(2cosx+sinx))=