Home
Class 12
MATHS
differentiate (tanx)^cotx+(cotx)^(tanx)...

differentiate `(tanx)^cotx+(cotx)^(tanx)`

Text Solution

Verified by Experts

Given that,
`y=(tanx)^cotx+(cotx)^(tanx)`
`=>y=e^(log(tanx)cotx)+e^(log(cotx)tanx)`
`=>y=e^(cotx log(tanx))+e^(tanx log(cotx))`
`=>(dy)/(dx)=e^(cotx log(tanx))[cotx *sec^2x/tanx - cosec^2x *log (tanx)]+e^(tanx log(cotx))[tanx*-cosec^2x/cotx +sec^2x*log(cotx)]`
`=>(dy)/(dx)=(tanx)^cotx(cosec^2x-cosec^2x*log(tanx))+(cotx)^tanx(-sec^2x+sec^2x*log(cotx))`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIALS, ERRORS AND APPROXIMATIONS

    RD SHARMA|Exercise Solved Examples And Exercises|102 Videos
  • DIRECTION COSINES AND DIRECTION RATIOS

    RD SHARMA|Exercise Solved Examples And Exercises|67 Videos

Similar Questions

Explore conceptually related problems

Differentiate y=tanx

y=(tanx)^(cotx)+(cotx)^(tanx)

Differentiate e^tanx cosx

Differentiate (sinx)/((1+cotx))

Differentiate: (2^(x)cotx)/(sqrtx)

Differentiate e^tanx. sinx

Differentiate e^tanx sinx

Differentiate e^(sqrt(cotx))

Differentiate (tanx tan 2x tan 3x tan 4x) w.r.t. x.

(tanx-cotx)^(2)