Home
Class 12
MATHS
If y=Acos(logx)+\ Bsin(logx) , prove tha...

If `y=Acos(logx)+\ Bsin(logx)` , prove that `x^2\ (d^2y)/(dx^2)+x(dy)/(dx)+y=0` .

Text Solution

Verified by Experts

We have given
`y=Acos(logx)+\ Bsin(logx)`
Then we have to proof
`x^2\ (d^2y)/(dx^2)+x(dy)/(dx)+y=0`
As,
`y=Acos(logx)+\ Bsin(logx)`
On differentiating w.r.t. x, we get
`(dy)/(dx)=a([-sin(log x)])/(x)-(bcos(log x))/(x)`
...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • FUNCTION

    RD SHARMA|Exercise Solved Examples And Exercises|393 Videos
  • INCREASING AND DECREASING FUNCTION

    RD SHARMA|Exercise Solved Examples And Exercises|232 Videos

Similar Questions

Explore conceptually related problems

If y=Acos(logx)+B sin(logx) then prove that x^(2)(d^(2)y)/(dx^(2))+x(dy)/(dx)+y=0 .

If y=sin(log x), prove that x^(2)(d^(2)y)/(dx^(2))+x(dy)/(dx)+y=0

Knowledge Check

  • If y=acos(log x)-bsin(log x), then the value of x^2(d^2y)/(dx^2)+xdy/dx+y is

    A
    4
    B
    0
    C
    2
    D
    3
  • Similar Questions

    Explore conceptually related problems

    If y=sin(log x), prove that x^(2)(d^(2)y)/(dx^(2))+x(dy)/(dx)+y=0

    If y=asin(logx)+bcos(logx) , prove that : x^(2)(d^(2)y)/(dx^(2))+x(dy)/(dx)+y=0 .

    If y=sin(log x), then prove that (x^(2)d^(2)y)/(dx^(2))+x(dy)/(dx)+y=0

    If y=a cos (logx)+b sin (logx) , prove that x^(2)y_(2)+xy_(1)+y=0 .

    (i) If y=asin(log x) then prove that x^(2)*(d^2y)/(dx^2)+x(dy)/(dx)+y=0 . (ii) If y=acos(log_(e)x)+bsin(log_(e)x) , then prove that x^2*y_2^2+x*y_(1)+y=0 .

    If y=sin(sin x), prove that (d^(2)y)/(dx^(2))+tan x(dy)/(dx)+y cos^(2)x=0

    If y=log[x+sqrt(x^(2)+1)], prove that (x^(2)+1)(d^(2)y)/(dx^(2))+x(dy)/(dx)=0