Home
Class 11
MATHS
Lim(n->oo) (1+1/2+1/2^2+1/2^3+........1/...

`Lim_(n->oo) (1+1/2+1/2^2+1/2^3+........1/2^n)/(1+1/3+1/3^2+1/3^3........1/3^n)`

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(n->oo) (1.2+2.3+3.4+....+n(n+1))/n^3

lim_(n->oo)[(1+1/n^2)(1+2^2 /n^2)(1+3^2 /n^2)......(1+n^2 / n^2)]^(1/n)

The value of lim_(n->oo) (1^2 . n+2^2.(n-1)+......+n^2 . 1)/(1^3+2^3+......+n^3) is equal to

lim_(n->oo)(1/(n^2+1)+2/(n^2+2)+3/(n^2+3)+....n/(n^2+n))

lim_(n->oo)(1/(n^2+1)+2/(n^2+2)+3/(n^2+3)+....n/(n^2+n))

lim_ (n rarr oo) (1+ (1) / (2) + (1) / (2 ^ (2)) + (1) / (2 ^ (3)) + ...... (1) / (2 ^ (n))) / (1+ (1) / (3) + (1) / (3 ^ (2)) + (1) / (3 ^ (3)) ...... (1) / (3 ^ (n)))

lim_(n->oo) {1/1.3+1/3.5+1/5.7+.....+1/((2n+1)(2n+3)) is equal to

underset(n to oo)lim {1/2+1/2^(2)+1/2^(3)+...+1/2^(n)}=

evaluate lim_ (n rarr oo) [(1) / (3) + (1) / (3 ^ (2)) + (1) / (3 ^ (2)) + ......... + (1) / (3 ^ (n))]

lim_(n rarr oo) (1.2 +2.3+3.4+ .....+n(n+1))/n^(3)=