Home
Class 12
MATHS
If the function f(x)=2x^2-k x+5 is incre...

If the function `f(x)=2x^2-k x+5` is increasing on `[1,\ 2]` , then `k` lies in the interval (a) `(-oo,\ 4)` (b) `(4,\ oo)` (c) `(-oo,\ 8)` (d) `(8,\ oo)`

Text Solution

AI Generated Solution

To determine the values of \( k \) for which the function \( f(x) = 2x^2 - kx + 5 \) is increasing on the interval \([1, 2]\), we follow these steps: ### Step 1: Find the derivative of the function The first step is to find the derivative of the function \( f(x) \). \[ f'(x) = \frac{d}{dx}(2x^2 - kx + 5) = 4x - k \] ...
Promotional Banner

Topper's Solved these Questions

  • HIGHER ORDER DERIVATIVES

    RD SHARMA|Exercise Solved Examples And Exercises|176 Videos
  • INDEFINITE INTEGRALS

    RD SHARMA|Exercise Solved Examples And Exercises|1401 Videos

Similar Questions

Explore conceptually related problems

If the function f(x)=x^(2)-kx+5 is increasing on [2,4], then (a) k in(2,oo)(b)k in(-oo,2)(c)k in(4,oo)(d)k in(-oo,4)

The function f(x)=cot^(-1)x+x increases in the interval (a)(1,oo)(b)(-1,oo)(c)(-oo,oo)(d)(0,oo)

[ (d) ak^(2)+2bk+cgt0 (4) If both the roots of the quadratic equation x^(2)-4ax+2a^(2)-3a+5 are less than 2, then a lies in the set (a) (9/2,oo) (b) (-oo,9/2) (c) (-1,oo) (d) (2,oo)]

The value of b for which the function f(x)=sin x-bx+c is decreasing in the interval (-oo,oo) is given by

f(x) = x^2 increases on: (a) ( 0,oo) (b) (-oo,0) (c) (-7,-3) (d) (-oo,-3)

Let f(x)=inte^x(x-1)(x-2)dxdot Then f decreases in the interval (a)(-oo,-2) (b) -2,-1) (c)(1,2) (d) (2,+oo)

x^2/(p^2 - P-6) + y^2/(P^2 - 6P + 5) = 1 will represent the ellipse if P lies in the interval (A) (-oo, -2) (B) (1, oo) (C) (3, oo) (D) (5, oo)

The function sin x-bx+c will be increasing in the interval (-oo,oo) ,if

the interval in which the function f given by f(x) = x^2 e^(-x) is strictly increasing, is (a) ( -(oo) , (oo) ) (b) ( -(oo) , 0 ) (c) ( 2 , (oo) ) (d) ( 0 , 2 )

RD SHARMA-INCREASING AND DECREASING FUNCTION -Solved Examples And Exercises
  1. The function f(x)=x^x decreases on the interval (a) (0,\ e) (b) (0,\ ...

    Text Solution

    |

  2. The function f(x)=2log(x-2)-x^2+4x+1 increases on the interval (a) (1,...

    Text Solution

    |

  3. If the function f(x)=2x^2-k x+5 is increasing on [1,\ 2] , then k lies...

    Text Solution

    |

  4. IF f(x)=x^3+a x^2+b x+5sin^2x\ is a strictly increasing functio...

    Text Solution

    |

  5. The function f(x)=(log)e(x^3+sqrt(x^6+1)) is of the following types: (...

    Text Solution

    |

  6. If the function f(x)=2tanx+(2a+1)(log)e|secx|+(a-2)x is increasing on ...

    Text Solution

    |

  7. Let f(x)=tan^(-1)(g(x)) , where g(x) is monotonically increasing for 0...

    Text Solution

    |

  8. Let f(x)=x^3-6x^2+15 x+3 . Then, (a) f(x)>0 for all x in R (b) f(x)>...

    Text Solution

    |

  9. The function f(x)=x^2\ e^(-x) is monotonic increasing when (a) x in R...

    Text Solution

    |

  10. Function f(x)=cosx-2\ lambda\ x is monotonic decreasing when (a) lambd...

    Text Solution

    |

  11. In the interval (1,\ 2) , function f(x)=2|x-1|+3|x-2| is (a) monotonic...

    Text Solution

    |

  12. Function f(x)=x^3-27 x+5 is monotonically increasing when (a) x<-3 (b...

    Text Solution

    |

  13. Function f(x)=2x^3-9x^2+12 x+29 is monotonically decreasing when (a) x...

    Text Solution

    |

  14. If f(x)=k x^3-9x^2+9x+3 monotonically increasing in R , then k<3 (b) ...

    Text Solution

    |

  15. f(x)=2x-tan^(-1)x-log{x+sqrt(x^2+1)} is monotonically increasing when ...

    Text Solution

    |

  16. Function f(x)=|x|-|x-1| is monotonically increasing when (a) x<0 (b) ...

    Text Solution

    |

  17. Every invertible function is (a) monotonic function          (b) co...

    Text Solution

    |

  18. In the interval (1,\ 2) , function f(x)=2|x-1|+3|x-2| is (a) increasin...

    Text Solution

    |

  19. If the function f(x)=cos|x|-2a x+b increases along the entire number s...

    Text Solution

    |

  20. The function f(x)=x/(1+|x|) is (a) strictly increasing (b) strictly...

    Text Solution

    |