Home
Class 12
MATHS
If the function f(x)=2tanx+(2a+1)(log)e|...

If the function `f(x)=2tanx+(2a+1)(log)_e|secx|+(a-2)x` is increasing on `R` , then (a) `a in (1//2,\ oo)` (b) `a in (-1//2,\ 1//2)` (c) `a=1//2` (d) `a in R`

Text Solution

AI Generated Solution

To determine the values of \( a \) for which the function \( f(x) = 2\tan x + (2a + 1)\log_e|\sec x| + (a - 2)x \) is increasing on \( \mathbb{R} \), we need to analyze the derivative of the function. ### Step 1: Find the derivative \( f'(x) \) The derivative of \( f(x) \) can be calculated as follows: \[ f'(x) = \frac{d}{dx}(2\tan x) + \frac{d}{dx}((2a + 1)\log_e|\sec x|) + \frac{d}{dx}((a - 2)x) ...
Promotional Banner

Topper's Solved these Questions

  • HIGHER ORDER DERIVATIVES

    RD SHARMA|Exercise Solved Examples And Exercises|176 Videos
  • INDEFINITE INTEGRALS

    RD SHARMA|Exercise Solved Examples And Exercises|1401 Videos

Similar Questions

Explore conceptually related problems

If the function f(x)=2tan x+(2a+1)log_(e)|sec x|+(a-2)x is increasing on R, the

Show that f(x)=2x+cot^(-1)x+log(sqrt(1+x^(2))-x) is increasing in R

Show that f(x)=2x+cot^(-1)x+log(sqrt(1+x^(2))-x) is increasing on R.

The function f(x)=log x-(2x)/(x+2) is increasing for all A) x in(-oo,0) , B) x in(-oo,1) C) x in(-1,oo) D) x in(0,oo)

Prove that the function f(x)=log_(e)(x^(2)+1)-e^(-x)+1 is strictly increasing AA x in R.

The function f(x)=2log(x-2)-x^(2)+4x+1 increases on the interval (a) (1,2)(b)(2,3)(c)(1,3) (d) (2,4)

If the function f(x)=(x^(2))/(2)+ln x+ax is always monotonically increasing in its domain then the least value of a is 2(b)-2(c)-1(d)1

f(x)=2x-tan^(-1)x-log{x+sqrt(x^(2)+1)} is monotonically increasing when (a) x>0 (b) x<0( c) x in R( d ) x in R-{0}

Let f''(x)gt0 and phi(x)=f(x)+f(2-x),x in(0,2) be a function then the function phi(x) is (A) increasing in (0,1) and decreasing (1,2) (B) decreasing in (0, 1) and increasing (1,2) (C) increasing in (0, 2) (D) decreasing in (0,2)

If f(x)=((a^(2)-1)/(3))x^(3)+(a-1)x^(2)+2x monotonically increasing for every x in R then a can lie in (A) (1,2) (B) (1,oo) (C) (-oo,-3) (D) (-10,-7)

RD SHARMA-INCREASING AND DECREASING FUNCTION -Solved Examples And Exercises
  1. IF f(x)=x^3+a x^2+b x+5sin^2x\ is a strictly increasing functio...

    Text Solution

    |

  2. The function f(x)=(log)e(x^3+sqrt(x^6+1)) is of the following types: (...

    Text Solution

    |

  3. If the function f(x)=2tanx+(2a+1)(log)e|secx|+(a-2)x is increasing on ...

    Text Solution

    |

  4. Let f(x)=tan^(-1)(g(x)) , where g(x) is monotonically increasing for 0...

    Text Solution

    |

  5. Let f(x)=x^3-6x^2+15 x+3 . Then, (a) f(x)>0 for all x in R (b) f(x)>...

    Text Solution

    |

  6. The function f(x)=x^2\ e^(-x) is monotonic increasing when (a) x in R...

    Text Solution

    |

  7. Function f(x)=cosx-2\ lambda\ x is monotonic decreasing when (a) lambd...

    Text Solution

    |

  8. In the interval (1,\ 2) , function f(x)=2|x-1|+3|x-2| is (a) monotonic...

    Text Solution

    |

  9. Function f(x)=x^3-27 x+5 is monotonically increasing when (a) x<-3 (b...

    Text Solution

    |

  10. Function f(x)=2x^3-9x^2+12 x+29 is monotonically decreasing when (a) x...

    Text Solution

    |

  11. If f(x)=k x^3-9x^2+9x+3 monotonically increasing in R , then k<3 (b) ...

    Text Solution

    |

  12. f(x)=2x-tan^(-1)x-log{x+sqrt(x^2+1)} is monotonically increasing when ...

    Text Solution

    |

  13. Function f(x)=|x|-|x-1| is monotonically increasing when (a) x<0 (b) ...

    Text Solution

    |

  14. Every invertible function is (a) monotonic function          (b) co...

    Text Solution

    |

  15. In the interval (1,\ 2) , function f(x)=2|x-1|+3|x-2| is (a) increasin...

    Text Solution

    |

  16. If the function f(x)=cos|x|-2a x+b increases along the entire number s...

    Text Solution

    |

  17. The function f(x)=x/(1+|x|) is (a) strictly increasing (b) strictly...

    Text Solution

    |

  18. The function f(x)=(lambdasinx+2cosx)/(sinx+cosx) is increasing, if (a)...

    Text Solution

    |

  19. Function f(x)=a^x is increasing on R , if (a) a >0 (b) a<0 (c) 0 lt ...

    Text Solution

    |

  20. Function f(x)=(log)a x is increasing on R , if (a) 0<a<1 (b) a >1 (c...

    Text Solution

    |