Home
Class 10
MATHS
" (ii) "x^(5)+(6)/(x)-tan(x^(2))...

" (ii) "x^(5)+(6)/(x)-tan(x^(2))

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the derivatives w.r.t. x : x^(5)+(6)/(x)-tan(x^(2))

int(x+root(3)(x^(2))+root(6)(x))/(x(1+root(3)(x)))dx is equal to (i)(3)/(2)x(1+root(3)(x))(3)/(2)x^((2)/(3))+6tan^(-1)x^(6)+C( iii) (3)/(2)x^((2)/(3))+6tan^(-1)x^((1)/(6))+C( iv) (2)/(3)x^((2)/(3))+5tan^(-1)x^(6)+C

The minimum value of the function tan(x+(pi)/(6))f(x)=(tan(x+(pi)/(6)))/(tan x) is:

Let J=int_(-5)^(-4)(3-x^(2))tan(3-x^(2))dx and K=int_(-2)^(-1)(6-6x+x^(2))tan(6x-x^(2)-6)dx.Then (J+K) equals

(d)/(dx)[tan^(-1)((6x)/(1+7x^(2)))]+(d)/(dx)[tan^(-1)((5+2x)/(2-5x))]=

The function f(x)=[[(6/5)^((tan6x)/(tan5x)) if 0

If (sin x + cos x)/(sin x - cos x) = (6)/(5) , then the value of (tan^(2) x + 1)/(tan^(2) x-1) is :

Prove that: tan4x=(4tan x(1-tan^(2)x))/(1-6tan^(2)x+tan^(4)x)

tan4x=(4tan x(1-tan^(2)x))/(1-6tan^(2)x+tan^(4)x)