Home
Class 12
MATHS
Evaluate: int(e^(6\ (log)e x)-e^(5\ (log...

Evaluate: `int(e^(6\ (log)_e x)-e^(5\ (log)_e x))/(e^(4\ (log)_e x)-e^(3\ (log)_e x))\ dx`

Text Solution

Verified by Experts

`int(frac{e^{6 log x}-e^{5 log x}}{e^{4 log x}-e^{3 log x}}) d x `
`=int(frac{e^{log x^{6}}-e^{log x^{5}}}{e^{log x^{4}}-e^{log x^{3}}}) d x `
`=int(frac{x^{6}-x^{5}}{x^{4}-x^{3}}) d x `
`=int frac{x^{5}}{x^{3}} d x `
`=int x^{2} d x `
`=frac{x^{3}}{3}+C`
Promotional Banner

Topper's Solved these Questions

  • INCREASING AND DECREASING FUNCTION

    RD SHARMA|Exercise Solved Examples And Exercises|232 Videos
  • INVERSE TRIGONOMETRIC FUNCTION

    RD SHARMA|Exercise Solved Examples And Exercises|523 Videos

Similar Questions

Explore conceptually related problems

Evaluate: int(e^(5(log)_(e)x)-e^(4(log)_(e)x))/(e^(3(log)_(e)x-e^(2log x)))dx

Evaluate: int(e^(5)(log)_(e)x-e^(4)(log)_(e)x)/(e^(3)(log)_(e)x-e^(2)(log)_(e^(x))x)dx

int(e^(6log x)-e^(5log x))/(e^(5log x)-e^(3log x))dx

int(e^(6log_(e)x)-e^(5log_(e)x))/(e^(4log_(e)xe^(3log_(e)x))) backslash dx

The value of int(e^(6log x)-e^(5log x))/(e^(4log x)-e^(3log x))dx is equal

int(e^(6log x) -e^(5log x ))/(e^(4log x) -e^(3log x)) dx= ax^(3) +bx^(2) +c

Evaluate int 5^(log _(e)x)dx

Evaluate: int e^(x log a)+e^(a log x)+e^(a log a)dx

Evaluate: int_e^(e^2) (dx)/(x log x)

Evaluate int e^x/log(e^x)dx