Home
Class 12
MATHS
Evaluate: int(e^(logsqrt(x)))/x\ dx...

Evaluate: `int(e^(logsqrt(x)))/x\ dx`

Text Solution

AI Generated Solution

To evaluate the integral \( \int \frac{e^{\log \sqrt{x}}}{x} \, dx \), we can follow these steps: ### Step 1: Simplify the integrand We start with the expression \( e^{\log \sqrt{x}} \). Using the property of logarithms and exponentials, we know that: \[ e^{\log a} = a \] for any positive \( a \). Thus, we can simplify: ...
Promotional Banner

Topper's Solved these Questions

  • INCREASING AND DECREASING FUNCTION

    RD SHARMA|Exercise Solved Examples And Exercises|232 Videos
  • INVERSE TRIGONOMETRIC FUNCTION

    RD SHARMA|Exercise Solved Examples And Exercises|523 Videos

Similar Questions

Explore conceptually related problems

inte^(logsqrt (x))/xdx

Evaluate : int (e^("log x "))/(x) " dx "

Evaluate: int(x+1)e^(x)log(xe^(x))dx

Evaluate: int e^(x)sqrt(e^(2x)+1)dx

Evaluate int 5^(log _(e)x)dx

Evaluate int(e^(x))/(sqrt(1-e^(2x)))dx

Evaluate int e^x/log(e^x)dx

Evaluate int(e^(x)-e^(-x))^(3)dx

Evaluate: int e^x/sqrt (e^(2x)-9)dx

Evaluate int(e^(x)-e^(-x))^(3)dx