Home
Class 10
MATHS
(x-1)/(x-2)+(x-3)/(x-4)=3(1)/(3)...

(x-1)/(x-2)+(x-3)/(x-4)=3(1)/(3)

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve the following equation by using the method of factorization: (x-1)/(x-2)+(x-3)/(x-4)=3fr1/3 , x != 2,4.

Solve: 1/((x-1)(x-2))+1/((x-2)(x-3))+1/((x-3)(x-4))=1/6[x!=1,2,3,4]

Observe the following pattern (1x2)+(2x3)=(2x3x4)/(3)(1x2)+(2x3)+(3x4)=(3x4x5)/(3)(1x2)+(2x3)+(3x4)+(4x5)=(4x5x6)/(3) and find the of (1x2)+(2x3)+(3x4)+(4x5)+(5x6)

If the partial fractions of (3x^(2)+4)/((x-1)^(3)) is (3)/(x-1)+(A)/((x-1)^(2))+(7)/((x-1)^(3)) , then A= _________.

The term independent of x in expansion of ((x+1)/(x^((2)/(3))-x^((1)/(3))+1)-(x-1)/(x-x^((1)/(2)))) is (1)120 (2) 210(3)310(4)4

(x) / (3) + (4) / (3) = (2) / (3) (4x-1)-(2x-(x + 1) / (3))

Check whether the following are quadratic equations : (1) (x-1)^(2)=2(x-3) (2) x^(2)-2x=(-2)(3-x) (3) (x-2)(x+1)=(x-1)(x+3) (4) (x-3)(2x+1)=x(x+5) (5) (2x-1)(x-3)=(x+5)(x-1) (6) x^(2)+3x+1=(x-2)^(2) (7) (x+2)^(3)=2x(x^(2)-1) (8) x^(3)-4x^(2)-x+1=(x-2)^(3)

If x^(2)+(1)/(x^(2))=(17)/(4), then find x-(1)/(x),x+(1)/(x),x^(3)-(1)/(x^(3)) and x^(3)+(1)/(x^(3))

Solve for x:4^(x)-3^(x-(1)/(2))=3^(x+(1)/(2))-2^(2x-1)