Home
Class 12
MATHS
Evaluate: intsqrt(1-sin2x)\ dx...

Evaluate: `intsqrt(1-sin2x)\ dx`

Text Solution

AI Generated Solution

To evaluate the integral \( \int \sqrt{1 - \sin 2x} \, dx \), we will follow these steps: ### Step 1: Rewrite the expression inside the square root We start with the expression \( 1 - \sin 2x \). We can use the identity for \( \sin 2x \): \[ \sin 2x = 2 \sin x \cos x \] Thus, we can rewrite: ...
Promotional Banner

Topper's Solved these Questions

  • INCREASING AND DECREASING FUNCTION

    RD SHARMA|Exercise Solved Examples And Exercises|232 Videos
  • INVERSE TRIGONOMETRIC FUNCTION

    RD SHARMA|Exercise Solved Examples And Exercises|523 Videos

Similar Questions

Explore conceptually related problems

intsqrt(1+sin 2x) dx

intsqrt(1-cos 2x) dx

intsqrt(1-sin7x)dx=

Evaluate: intsqrt (1-x^2)dx

Evaluate: intsqrt (sin2x)cos2xdx

Evaluate: intsqrt(3+2x-x^2)\ dx

Evaluate: int sqrt(1+cos2x) dx (ii) int sqrt(1+sin2x) dx.

Evaluate: intsqrt(x^2-x+1)\ dx

Evaluate: intsqrt((1+x)/x)\ dx

intsqrt(1+cos 2x) dx