Home
Class 12
MATHS
int1/((7x-5)^3)+1/(sqrt(5x-4))\ dx...

`int1/((7x-5)^3)+1/(sqrt(5x-4))\ dx`

Text Solution

Verified by Experts

`=int1/((7x-5)^3)+1/(sqrt(5x-4))\ dx`

Let, `7x-5=t` and `5x-4=z`

`dx=dt/7` and `dx=dz/5`

`=(1)/(7)int1/((t)^3)dt+int1/(5sqrt(z))dz`

`=(-1)/(14t^2)+(2sqrt(z))/(5)+C`

`=(-1)/(14(7x-5)^2)+(2sqrt(5x-4))/(5)+C`

Promotional Banner

Topper's Solved these Questions

  • INCREASING AND DECREASING FUNCTION

    RD SHARMA|Exercise Solved Examples And Exercises|232 Videos
  • INVERSE TRIGONOMETRIC FUNCTION

    RD SHARMA|Exercise Solved Examples And Exercises|523 Videos

Similar Questions

Explore conceptually related problems

int1/(7x+5)dx

Evaluate: int{(2x-3)^(5)+(1)/((7x-5)^(3))+(1)/(sqrt(5x-4))+(1)/(2-3x)+sqrt(3x+2)}dx

int(x)/(sqrt(1-5x))dx

int1/sqrt(5-3x)dx

Evaluate: ( i ) int sqrt(x)(3-5x)dx (ii) int((x+1)(x-2))/(sqrt(x))dx

int1/sqrt(1-5x^2)dx

int1/sqrt(3x^2-5)dx

int_0^1 1/sqrt(5x+3) dx=

int(e^(5x))/(sqrt(e^(5x)+1))dx=

int (1)/((x+5)sqrt(x+4))dx is :