Home
Class 12
MATHS
int(2x)/((2x+1)^2)\ dx...

`int(2x)/((2x+1)^2)\ dx`

Text Solution

AI Generated Solution

To solve the integral \( \int \frac{2x}{(2x+1)^2} \, dx \), we can use a technique of rewriting the integrand to facilitate integration. Here’s a step-by-step solution: ### Step 1: Rewrite the Integrand We can rewrite the integrand \( \frac{2x}{(2x+1)^2} \) by adding and subtracting 1 in the numerator: \[ \frac{2x}{(2x+1)^2} = \frac{(2x + 1) - 1}{(2x + 1)^2} = \frac{2x + 1}{(2x + 1)^2} - \frac{1}{(2x + 1)^2} \] ...
Promotional Banner

Topper's Solved these Questions

  • INCREASING AND DECREASING FUNCTION

    RD SHARMA|Exercise Solved Examples And Exercises|232 Videos
  • INVERSE TRIGONOMETRIC FUNCTION

    RD SHARMA|Exercise Solved Examples And Exercises|523 Videos

Similar Questions

Explore conceptually related problems

Evaluate :int(2x-3)/((x-1)^(2)(2x+3))dx

find (int(2x)/(x^(2)+1)+x^(2))dx

find- int_2^3(2x)/(1+x^2)dx

int(xe^(2x))/((1+2x)^(2))dx

int(xe^(2x))/((1+2x)^(2))dx

int (x-1)^2/((x^2+1)^2)dx=

Evaluate the following integrals: inte^(2x)((2x-1)/(4x^(2)))dx

Evaluate: int(x^2+1)/((2x+1)(x^2-1))\ dx