Home
Class 12
MATHS
int(1+cos4x)/(cotx-tanx)\ dx...

`int(1+cos4x)/(cotx-tanx)\ dx`

Text Solution

AI Generated Solution

To solve the integral \(\int \frac{1 + \cos 4x}{\cot x - \tan x} \, dx\), we will follow these steps: ### Step 1: Rewrite the Integral We start with the integral: \[ \int \frac{1 + \cos 4x}{\cot x - \tan x} \, dx \] We know that \(\cot x = \frac{\cos x}{\sin x}\) and \(\tan x = \frac{\sin x}{\cos x}\). Thus, we can rewrite the denominator: ...
Promotional Banner

Topper's Solved these Questions

  • INCREASING AND DECREASING FUNCTION

    RD SHARMA|Exercise Solved Examples And Exercises|232 Videos
  • INVERSE TRIGONOMETRIC FUNCTION

    RD SHARMA|Exercise Solved Examples And Exercises|523 Videos

Similar Questions

Explore conceptually related problems

int(1+cos 4x)/(cotx-tanx)dx=

int(cos4x-1)/(cotx-tanx)dx is equal to

l=int(cos^(4)x+1)/(cotx-tanx)dx is equal to

If int (cos4x+1)/(cotx-tanx)dx=Af(x)+B, then

If int(cos 4x+1)/(cotx-tanx)dx=a cos 4x+c, then a=

"If " int(cos 4x+1)/(cotx-tanx)dx=Acos4x+B, " then "

If int(cos4x+1)/(cotx-tanx)dx=kcos4x+c , then k= (A) -1/4 (B) -1/2 (C) -1/8 (D) none of these

int(cos 4x-1)/(cot x-tanx)dx is equal to

int(1+cotx)/(1-cotx)dx=