Home
Class 12
MATHS
inttan^2(2x-3)\ dx...

`inttan^2(2x-3)\ dx`

Text Solution

AI Generated Solution

To solve the integral \( \int \tan^2(2x - 3) \, dx \), we can follow these steps: ### Step 1: Use the identity for \( \tan^2 x \) We know that: \[ \tan^2 x = \sec^2 x - 1 \] Thus, we can rewrite \( \tan^2(2x - 3) \) as: ...
Promotional Banner

Topper's Solved these Questions

  • INCREASING AND DECREASING FUNCTION

    RD SHARMA|Exercise Solved Examples And Exercises|232 Videos
  • INVERSE TRIGONOMETRIC FUNCTION

    RD SHARMA|Exercise Solved Examples And Exercises|523 Videos

Similar Questions

Explore conceptually related problems

inttan^2xdx

inttan^3xdx

inttan^(2)x" " dx=

inttan^2x/(secx-1)dx=?

inttan^2xsec^2xdx=

The value of inttan^(3)2xsec2x dx is equal to:

inttan^2x/(1+secx)dx=?

inttan^3 2xsec 2xdx

Evaluate: inttan^3 2x.sec2xdx

inttan^pxsec^2xdx=