Home
Class 12
MATHS
int1/(cos^2x(1-tanx)^2)\ dx...

`int1/(cos^2x(1-tanx)^2)\ dx`

Text Solution

AI Generated Solution

To solve the integral \(\int \frac{1}{\cos^2 x (1 - \tan x)^2} \, dx\), we will follow these steps: ### Step 1: Rewrite the Integral First, we can rewrite \(\cos^2 x\) in terms of secant: \[ \int \frac{1}{\cos^2 x (1 - \tan x)^2} \, dx = \int \frac{\sec^2 x}{(1 - \tan x)^2} \, dx \] ...
Promotional Banner

Topper's Solved these Questions

  • INCREASING AND DECREASING FUNCTION

    RD SHARMA|Exercise Solved Examples And Exercises|232 Videos
  • INVERSE TRIGONOMETRIC FUNCTION

    RD SHARMA|Exercise Solved Examples And Exercises|523 Videos

Similar Questions

Explore conceptually related problems

int(dx)/((1+cos2x)(1-tan^2 x))=

Evaluate int sec^2x/(1+tanx)^2dx

Evaluate int sec^2x/(1+tanx)^(3/2)dx

int(sec^(2)x)/((1+tanx))dx

int1/(1+cos^(2)x)dx=

int((1+tan)/(1-tanx))^(2)dx=

Evaluate : int (sec^2x/(1+tanx)dx)

Evaluate : int (sec^2x/(1+tanx)dx)

int(sec^2x)/(2+tanx)dx

Evaluate: int1/(1-tanx)\ dx