Home
Class 12
MATHS
Integrate: intcosm xcosn x\ dx ,\ \ m!=n...

Integrate: `intcosm xcosn x\ dx ,\ \ m!=n`

Text Solution

AI Generated Solution

To solve the integral \( \int \cos(mx) \cos(nx) \, dx \) where \( m \neq n \), we can use the product-to-sum identities for cosine functions. Here’s a step-by-step solution: ### Step 1: Apply the Product-to-Sum Formula The product-to-sum formula states that: \[ \cos A \cos B = \frac{1}{2} \left( \cos(A + B) + \cos(A - B) \right) \] In our case, let \( A = mx \) and \( B = nx \). Thus, we have: ...
Promotional Banner

Topper's Solved these Questions

  • INCREASING AND DECREASING FUNCTION

    RD SHARMA|Exercise Solved Examples And Exercises|232 Videos
  • INVERSE TRIGONOMETRIC FUNCTION

    RD SHARMA|Exercise Solved Examples And Exercises|523 Videos

Similar Questions

Explore conceptually related problems

Integrate: int_(0)^(oo)sin x dx

Integrate : int e^x sin x dx.

Integrate- int(sin x+cos x)^(2)dx

Integrate int(x-sin x)/(1-cos x)dx

Integrate int_1^2x^3dx

Integrate int(1)/(1+cot x)dx

Integrate : int(x)/(a +x)dx

Integrate : int( x sqrt( x + 5 )) dx

Integration of cos^(-1) x dx

Integrate : int ( sqrt(x^5 ) ) dx