Home
Class 12
MATHS
Evaluate: int1/(sqrt(1-sinx))\ dx...

Evaluate: `int1/(sqrt(1-sinx))\ dx`

Text Solution

AI Generated Solution

To evaluate the integral \( \int \frac{1}{\sqrt{1 - \sin x}} \, dx \), we can follow these steps: ### Step 1: Rewrite the integrand We start with the expression under the square root. We can use the identity \( 1 - \sin x = 1 - \sin x \cdot \frac{1 + \sin x}{1 + \sin x} = \frac{(1 - \sin x)(1 + \sin x)}{1 + \sin x} = \frac{\cos^2 x}{1 + \sin x} \). Thus, we can rewrite the integral as: \[ \int \frac{1}{\sqrt{1 - \sin x}} \, dx = \int \frac{1}{\sqrt{\frac{\cos^2 x}{1 + \sin x}}} \, dx = \int \frac{\sqrt{1 + \sin x}}{\cos x} \, dx ...
Promotional Banner

Topper's Solved these Questions

  • INCREASING AND DECREASING FUNCTION

    RD SHARMA|Exercise Solved Examples And Exercises|232 Videos
  • INVERSE TRIGONOMETRIC FUNCTION

    RD SHARMA|Exercise Solved Examples And Exercises|523 Videos

Similar Questions

Explore conceptually related problems

Evaluate : int(dx)/(sqrt(1-sinx))

Evaluate: int1/(sqrt(2x-x^2))\ dx

Evaluate: int1/(sqrt(5x^2-2x))\ dx

int(1)/(sqrt(1+sinx))dx=

Evaluate: int1/(x^2sqrt(1+x^2))\ dx

Evaluate: int1/(sqrt(1+x^2))dx

Evaluate: int1/(sqrt(x^2-4x+2))\ dx

Evaluate: int1/(sqrt(7-6x-x^2))\ dx

Evaluate: int1/(sqrt(8+3x-x^2))\ dx

Evaluate: int1/(sqrt(16-6x-x^2))\ dx