Home
Class 12
MATHS
Evaluate: inttan^3xsec^3x\ dx...

Evaluate: `inttan^3xsec^3x\ dx`

Text Solution

AI Generated Solution

To evaluate the integral \( I = \int \tan^3 x \sec^3 x \, dx \), we can follow these steps: ### Step 1: Rewrite the integral We start with the integral: \[ I = \int \tan^3 x \sec^3 x \, dx \] We can express \(\tan^3 x\) in terms of \(\sec^2 x\): ...
Promotional Banner

Topper's Solved these Questions

  • INCREASING AND DECREASING FUNCTION

    RD SHARMA|Exercise Solved Examples And Exercises|232 Videos
  • INVERSE TRIGONOMETRIC FUNCTION

    RD SHARMA|Exercise Solved Examples And Exercises|523 Videos

Similar Questions

Explore conceptually related problems

inttan^3xsec^3xdx=

Evaluate inttan^4xdx

inttan^3xsec^9xdx=?

inttan^3xsec^5xdx=

Evaluate: inttan^3 2x.sec2xdx

int tan^3xsec^2xdx

inttan^3xdx

Evaluate: inttan^-1xdx

inttan^3xsecxdx=

inttan^3 2xsec 2xdx