Home
Class 12
MATHS
Evaluate: inttan^4x dx...

Evaluate: `inttan^4x dx`

Text Solution

Verified by Experts

`text { Let } I=int tan ^{4} x d x`
`=int tan ^{2} x cdot tan ^{2} x d x`
`=int(sec ^{2} x-1) tan ^{2} x d x`
`=int sec ^{2} x cdot tan ^{2} xdx-int tan ^{2} xdx`
`=int tan ^{2} x cdot sec ^{2} x-int(sec ^{2} x-1) d x`
`text { Putting } tan x=t text { in the Ist integral }`
`Rightarrow sec ^{2} x d x=d t`
`therefore I=int t^{2} cdot d t-int(sec ^{2} x-1) d x`
...
Promotional Banner

Topper's Solved these Questions

  • INCREASING AND DECREASING FUNCTION

    RD SHARMA|Exercise Solved Examples And Exercises|232 Videos
  • INVERSE TRIGONOMETRIC FUNCTION

    RD SHARMA|Exercise Solved Examples And Exercises|523 Videos

Similar Questions

Explore conceptually related problems

Evaluate inttan^4xdx

Evaluate: inttan^-1xdx

Evaluate inttan^(2)xdx (ii) inte^(x)(cosx-sinx)dx (iii) int3x^(1//2)(1+x^(3//2))dx (iv) intsin3xcos2xdx

Evaluate: inttan^3 2x.sec2xdx

Evaluate: int tan^8x sec^4x dx

Evaluate: inttan^(-1)(x/a)dx .

Evaluate: inttan^(-1)x."ln"(1+x^(2))dx

Evaluate: inttan(pi/4-x)/(cos^2xsqrt(tan^3x+tan^2x+tanx))dx

inttan^(2)x" " dx=

inttan^4 xsec^2xdx