Home
Class 12
MATHS
Prove that: inttan^n x\ dx=1/(n-1)tan^("...

Prove that: `inttan^n x\ dx=1/(n-1)tan^("n"-1)x-inttan^(n-2)x\ dx`

Text Solution

AI Generated Solution

To prove the recurrence relation for the integral of \( \tan^n x \), we need to show that: \[ \int \tan^n x \, dx = \frac{1}{n-1} \tan^{n-1} x - \int \tan^{n-2} x \, dx \] ### Step 1: Start with the integral Let \( I_n = \int \tan^n x \, dx \). ...
Promotional Banner

Topper's Solved these Questions

  • INCREASING AND DECREASING FUNCTION

    RD SHARMA|Exercise Solved Examples And Exercises|232 Videos
  • INVERSE TRIGONOMETRIC FUNCTION

    RD SHARMA|Exercise Solved Examples And Exercises|523 Videos

Similar Questions

Explore conceptually related problems

Prove that: int tan^(n)xdx=(1)/(n-1)tan^(n-1)x-int tan^(n-2)xdx

inttan^(2)x" " dx=

inttan^2(2x-3)dx

inttan(sin^(-1)x)dx=

inttan^2x/(secx-1)dx=?

inttan^(2)((x)/(2))dx=

inttan^(-1)((2tanx)/(1-tan^(2)x))dx=

Find int tan^nx sec^2x\ dx, (n!=-1)

inttan^2x/(1+secx)dx=?

inttan^(-1)(secx+tanx)dx=?