Home
Class 12
MATHS
Evaluate: (i) inttan^3xsec^2x\ dx (ii) i...

Evaluate: (i) `inttan^3xsec^2x\ dx` (ii) `inttanxsec^4x\ dx`

Text Solution

Verified by Experts

(i) `text { Let } I=int tan ^{3} x cdot sec ^{2} x d x `
`text { Let } tan x=t `
`Rightarrow sec ^{2} x d x=d t `
`therefore int t^{3} cdot d t `
`=frac{t^{4}}{4}+C `
`=frac{tan ^{4} x}{4}+C(because t=tan x)`

...
Promotional Banner

Topper's Solved these Questions

  • INCREASING AND DECREASING FUNCTION

    RD SHARMA|Exercise Solved Examples And Exercises|232 Videos
  • INVERSE TRIGONOMETRIC FUNCTION

    RD SHARMA|Exercise Solved Examples And Exercises|523 Videos

Similar Questions

Explore conceptually related problems

inttan^3xsec^9xdx=?

inttan^3 2xsec 2xdx

inttan^4 xsec^2xdx

inttan^3xsec^3xdx=

inttan^3xsec^5xdx=

inttan^2xsec^2xdx=

inttan ^(2/3)xsec^2xdx

int tan^(2)xsec^(4)x dx

(i) int tan^2 (2x-3) dx (ii) int sec^2 (7-4x) dx

Evaluate: (i) int e^(2x-3)dx (ii) int a^(3x+2)dx