Home
Class 12
MATHS
Evaluate: intsin^2xcos^5x\ dx...

Evaluate: `intsin^2xcos^5x\ dx`

Text Solution

AI Generated Solution

To evaluate the integral \( \int \sin^2 x \cos^5 x \, dx \), we can use a substitution method that takes advantage of the odd power of cosine. Here’s a step-by-step solution: ### Step 1: Identify the odd power We notice that \( \cos^5 x \) has an odd power. We can separate one \( \cos x \) from \( \cos^5 x \) to make the substitution easier. \[ \int \sin^2 x \cos^5 x \, dx = \int \sin^2 x \cos^4 x \cos x \, dx \] ...
Promotional Banner

Topper's Solved these Questions

  • INCREASING AND DECREASING FUNCTION

    RD SHARMA|Exercise Solved Examples And Exercises|232 Videos
  • INVERSE TRIGONOMETRIC FUNCTION

    RD SHARMA|Exercise Solved Examples And Exercises|523 Videos

Similar Questions

Explore conceptually related problems

Evaluate intsin^2xcos^5xdx

intsin^2xcos^5xdx

Evaluate: intsin^4xcos^2xdx

Evaluate : intsin^(2)xcos^(5)xdx .

Evaluate intsin3xcos5x\ dx

Evaluate intsin^(3)xcos^(5)xdx (ii) intsin^(2)xcos^(4)xdx (iii) intsin^(-11//3)xcos^(-1//3)xdx

Evaluate: intsin^(4)xcos^(2)xdx

intsin^2xcos2xdx

intsin^4 xcos^3x dx=

Evaluate: intdx/(sin^3xcos^5x)