Home
Class 12
MATHS
Evaluate: intcos^3x\ e^(logsinx)\ dx ....

Evaluate: `intcos^3x\ e^(logsinx)\ dx` .

Text Solution

AI Generated Solution

To evaluate the integral \( \int \cos^3 x \, e^{\log(\sin x)} \, dx \), we can follow these steps: ### Step 1: Simplify the Exponential Term We know that \( e^{\log(a)} = a \). Therefore, we can simplify \( e^{\log(\sin x)} \) to \( \sin x \). \[ \int \cos^3 x \, e^{\log(\sin x)} \, dx = \int \cos^3 x \, \sin x \, dx \] ...
Promotional Banner

Topper's Solved these Questions

  • INCREASING AND DECREASING FUNCTION

    RD SHARMA|Exercise Solved Examples And Exercises|232 Videos
  • INVERSE TRIGONOMETRIC FUNCTION

    RD SHARMA|Exercise Solved Examples And Exercises|523 Videos

Similar Questions

Explore conceptually related problems

Evaluate: inte^x(cotx+logsinx)dx

intcos^3x/sqrt (sinx)dx

Evaluate: int x^(3)e^(x)dx

Evaluate int_2^3 e^(-x) dx

Evaluate intcos sqrt(x)dx

intcos^3x/(sin^4x)dx=?

intcos x*e^((1+sin x))

Find intcos^3x\ dx

Evaluate: int x^2 e^(3x) dx

intcos^(3)xe^(log(sinx))dx is equal to