Home
Class 12
MATHS
Evaluate: int(sin^4x)/(cos^8x)\ dx...

Evaluate: `int(sin^4x)/(cos^8x)\ dx`

Text Solution

AI Generated Solution

To evaluate the integral \( I = \int \frac{\sin^4 x}{\cos^8 x} \, dx \), we can follow these steps: ### Step 1: Rewrite the Integral We start by rewriting the integral in terms of tangent and secant functions. We know that: \[ \sin^2 x = 1 - \cos^2 x \] Thus, we can express \(\sin^4 x\) as: ...
Promotional Banner

Topper's Solved these Questions

  • INCREASING AND DECREASING FUNCTION

    RD SHARMA|Exercise Solved Examples And Exercises|232 Videos
  • INVERSE TRIGONOMETRIC FUNCTION

    RD SHARMA|Exercise Solved Examples And Exercises|523 Videos

Similar Questions

Explore conceptually related problems

Evaluate int(sin^(4)x)/(cos^(8)x)dx

Evaluate int(sin^(6)x)/(cos^(8)x)dx

Evaluate: int1/(sin^4x+cos^4x)\ dx

Evaluate: int(sin^(5)x)/(cos^(4)x)dx

Evaluate: int(sin^(5)x)/(cos^(4)x)dx

" 6.Evaluate "int(sin^(4)x)/(Cos^(6)x)dx

Evaluate : (i) int(sin4x)/(cos2x)dx (ii) int(sin4x)/(sinx)dx

Evaluate: int(sin x)/(sin x-cos x)dx

int(sin x)/(cos^(4)x)dx

Evaluate: (i) int(sin4x)/(sin2x)dx( ii) int(sin4x)/(cos2x)dx