Home
Class 12
MATHS
Evaluate: int(sec^2x)/(1-tan^2x)\ dx...

Evaluate: `int(sec^2x)/(1-tan^2x)\ dx`

Text Solution

AI Generated Solution

To evaluate the integral \( \int \frac{\sec^2 x}{1 - \tan^2 x} \, dx \), we can follow these steps: ### Step 1: Rewrite the integral We know that \( \sec^2 x = 1 + \tan^2 x \). Therefore, we can rewrite the integral as: \[ \int \frac{\sec^2 x}{1 - \tan^2 x} \, dx = \int \frac{1 + \tan^2 x}{1 - \tan^2 x} \, dx \] ...
Promotional Banner

Topper's Solved these Questions

  • INCREASING AND DECREASING FUNCTION

    RD SHARMA|Exercise Solved Examples And Exercises|232 Videos
  • INVERSE TRIGONOMETRIC FUNCTION

    RD SHARMA|Exercise Solved Examples And Exercises|523 Videos

Similar Questions

Explore conceptually related problems

Evaluate: int(sec^(2)x)/(1-tan^(2)x)dx

Evaluate: int(tanxsec^2x)/(1-tan^2x)dx

int(sec^(2)x)/(1-tan^(2)x)dx

int(sec^(2)x)/(9-tan^(2)x)dx

Evaluate int sec^2x/(1+tanx)^2dx

int(sec^2x)/(1+tan x)dx

Evaluate int x^3(sec^2x-tan^2x)dx

Evaluate int sec^2x/(3+tan^2x)dx

Evaluate int sec^2x/(3+tan^2x)dx

Evaluate: int(sec^(2)x)/(tan x+2)dx