Home
Class 12
MATHS
Evaluate: int(2sin2varphi-cosvarphi)/(6-...

Evaluate: `int(2sin2varphi-cosvarphi)/(6-cos^2varphi-4\ sinvarphi)\ dvarphi`

Text Solution

Verified by Experts

I=`int(2sin2varphi-cosvarphi)/(6-cos^2varphi-4\ sinvarphi)\ dvarphi`
I=`int(4sin2varphicos2varphi-cosvarphi)/(6-(1-sin^2varphi)^2-4\ sinvarphi)\ dvarphi`
I=`int((4sin2varphi-1)cosvarphi)/(sin^2varphi-4cosvarphi+5)\ dvarphi`
let `sinvarphi=t`
`cosvarphidphi=dt`
So,
`I=int (4t-t)dt/(t^2-4t+5)`
`I=2int (2t-4)dt/(t^2-4t+5)+7int (dt)/(t^2-4t+5)`
...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INCREASING AND DECREASING FUNCTION

    RD SHARMA|Exercise Solved Examples And Exercises|232 Videos
  • INVERSE TRIGONOMETRIC FUNCTION

    RD SHARMA|Exercise Solved Examples And Exercises|523 Videos

Similar Questions

Explore conceptually related problems

int(2sin2 phi-cos phi)/(6-cos^(2)phi-4sin phi)d phi

Evaluate int(2 sin2x-cos x)/(6-cos^ (2)x-4sinx) dx .

Evaluate: int_(pi/4)^((3pi)/4) varphi/(1-sinvarphi)d varphi

Prove that the product of matrices [cos^(2)theta cos theta sin theta cos theta sin theta s in^(2)theta] and [cos^(2)varphi cos varphi sin varphi cos varphi sin varphi s in^(2)varphi] is the null matrix,when theta and varphi differ by an odd multiple of (pi)/(2) .

Evaluate: int(sin x cos x)/(3sin^(2)x-4cos^(2)x)dx

Evaluate: int(sin^(2)x)/(cos^(6)x)dx

int(2sin2 theta-cos theta)/(6-cos^(2)theta-4sin theta)d theta

Evaluate: int(cos4x-cos2x)/(sin4x-sin2x)dx

Evaluate: int(1)/(sin^(4)x cos^(2)x)dx

Evaluate: int(cos2x sin4xdx)/(cos^(4)x(1+cos^(2)2x))