Home
Class 12
MATHS
Evaluate: int1/(cosx-sinx)\ dx...

Evaluate: `int1/(cosx-sinx)\ dx`

Text Solution

AI Generated Solution

To evaluate the integral \( \int \frac{1}{\cos x - \sin x} \, dx \), we can follow these steps: ### Step 1: Multiply and Divide by \( \sqrt{2} \) We start by multiplying and dividing the integrand by \( \sqrt{2} \): \[ \int \frac{1}{\cos x - \sin x} \, dx = \int \frac{\sqrt{2}}{\sqrt{2}(\cos x - \sin x)} \, dx \] ...
Promotional Banner

Topper's Solved these Questions

  • INCREASING AND DECREASING FUNCTION

    RD SHARMA|Exercise Solved Examples And Exercises|232 Videos
  • INVERSE TRIGONOMETRIC FUNCTION

    RD SHARMA|Exercise Solved Examples And Exercises|523 Videos

Similar Questions

Explore conceptually related problems

Evaluate: int1/(cosx(5-4sinx)\ dx

Evaluate: int1/(5+7cosx+sinx)\ dx

Evaluate: int1/(sinx+cosx)\ dx

Evaluate: int1/(cosx(sinx+2cosx))\ dx

Evaluate: int(cosx-sinx)/(1+sin2x)dx

Evaluate int(cosx-sinx)/(cosx+sinx)(2+2sin2x)dx

Evaluate: int(2cosx-3sinx)/(6cosx+4sinx)dx

Evaluate: int1/(3+2sinx+cosx)dx

Evaluate: int(3+2cosx+4sinx)/(2sinx+cosx+3)\ dx

Evaluate : int ( sinx cosx ) dx