Home
Class 12
MATHS
Evaluate: int1/(sqrt(3)sinx+cosx)\ dx...

Evaluate: `int1/(sqrt(3)sinx+cosx)\ dx`

Text Solution

AI Generated Solution

To evaluate the integral \( I = \int \frac{1}{\sqrt{3} \sin x + \cos x} \, dx \), we can follow these steps: ### Step 1: Rewrite the Denominator We start by rewriting the denominator to make it easier to integrate. We can factor out a constant from the denominator: \[ I = \int \frac{1}{\sqrt{3} \sin x + \cos x} \, dx = \int \frac{1}{2 \left( \frac{1}{2} \cos x + \frac{\sqrt{3}}{2} \sin x \right)} \, dx \] ...
Promotional Banner

Topper's Solved these Questions

  • INCREASING AND DECREASING FUNCTION

    RD SHARMA|Exercise Solved Examples And Exercises|232 Videos
  • INVERSE TRIGONOMETRIC FUNCTION

    RD SHARMA|Exercise Solved Examples And Exercises|523 Videos

Similar Questions

Explore conceptually related problems

Evaluate int(1)/(sqrt(3)sinx+cosx)dx .

Evaluate int(sqrt(tanx))/(sinx cosx)dx

Evaluate: int1/(cosx(sinx+2cosx))\ dx

Evaluate: int1/((2sinx+3cosx)^2)\ dx

Evaluate : int sqrt(1-sinx)cosx dx

int1/(sinxsqrt(sinx.cosx))dx=

Evaluate: int(dx)/(sinx+sqrt(3)cosx)

Evaluate: int1/(3+2sinx+cosx)dx

Evaluate: int1/(cosx-sinx)\ dx

Evaluate: int1/(cosx(5-4sinx)\ dx