Home
Class 12
MATHS
Evaluate: intsin2xtan^(-1)(sinx)\ dx...

Evaluate: `intsin2xtan^(-1)(sinx)\ dx`

Text Solution

Verified by Experts

Given integral is,
`intsin2xtan^(-1)(sinx)\ dx`
`=int 2sinx cosx tan^(-1)(sinx)\ dx`
taking `sinx=t`
`=>cosxdx=dt`
putting these values ,given integral becomes,
`=2 int t tan^-1 (t) dt`
`=2[tan^-1 t]tdt-int (d(tan^-1t))/(dt)(int tdt)dt]`
`=2[t^2/2 tan^-1(t)-int(1/(1+t^2))(t^2/2)dt`
`=t^2 tan^-1(t)-int((t^2+1-1)/(1+t^2))dt`
`=t^2 tan^-1(t)-int 1-1/(1+t^2) dt`
`=t^2 tan^-1(t)-t+tan^-1(t)+c`
`=sin^2xtan^-1 (sinx)-sinx+tan^-1(sinx)+c`
Promotional Banner

Topper's Solved these Questions

  • INCREASING AND DECREASING FUNCTION

    RD SHARMA|Exercise Solved Examples And Exercises|232 Videos
  • INVERSE TRIGONOMETRIC FUNCTION

    RD SHARMA|Exercise Solved Examples And Exercises|523 Videos

Similar Questions

Explore conceptually related problems

Evaluate int xtan^(-1)xdx

Evaluate int_0^(pi/2) sin2xtan^-1(sinx)dx

Evaluate : intsin4x.e^(tan^(2)x)dx

Evaluate: (i) intsin^(-1)(cosx) dx , 0lt=xlt=pi (ii) inttan^(-1){sqrt(((1-cos2x)/(1+cos2x)))} dx , 0

Evaluate: intsin^-1x/x^2dx

Evaluate int xtan^2xdx

Evaluate intsinx/sqrt (1+sinx) dx

Evaluate the following integral: int_0^(pi//2)s in2xtan^(-1)(sinx)dx

Evaluate :int(2xtan^(-1)x)/(1+x^(4))dx

Evaluate: int(sin2x)/((1+sinx)(2+sinx)\ dx