Home
Class 12
MATHS
Evaluate: int(sin^(-1)sqrt(x)-cos^(-1)sq...

Evaluate: `int(sin^(-1)sqrt(x)-cos^(-1)sqrt(x))/(sin^(-1)sqrt(x)+cos^(-1)sqrt(x))\ dx`

Text Solution

AI Generated Solution

To evaluate the integral \[ I = \int \frac{\sin^{-1}(\sqrt{x}) - \cos^{-1}(\sqrt{x})}{\sin^{-1}(\sqrt{x}) + \cos^{-1}(\sqrt{x})} \, dx, \] we can use the identity that relates the inverse sine and cosine functions: ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INCREASING AND DECREASING FUNCTION

    RD SHARMA|Exercise Solved Examples And Exercises|232 Videos
  • INVERSE TRIGONOMETRIC FUNCTION

    RD SHARMA|Exercise Solved Examples And Exercises|523 Videos

Similar Questions

Explore conceptually related problems

(sin^(-1)sqrt(x)-cos^(-1)sqrt(x))/(sin^(-1)sqrt(x)+cos^(-1)sqrt(x)),x in[0,1]

Evaluate: int sin^(-1)sqrt(x)dx

Knowledge Check

  • cos^(-1)sqrt(1-x)+sin^(-1)sqrt(1-x)=

    A
    `(pi)/(4)`
    B
    `1`
    C
    `pi`
    D
    `(pi)/(2)`
  • Similar Questions

    Explore conceptually related problems

    Evaluate: int sin^(-1)sqrt(x)dx

    Evaluate int(sin^-1sqrt (x)-cos^-1sqrt (x))/(sin^-1sqrt (x)+cos^-1sqrt (x))dx

    Find :int(sin^(-1)sqrt(x)-cos^(-1)sqrt(x))/(sin^(-1)sqrt(x)+cos^(-1)sqrt(x))dx,x in[0,1]

    The value of int(sin^-1sqrt(x)-cos^-1sqrt(x))/(sin^-1sqrt(x)+cos^-1sqrt(x))dx is equal to

    Evaluate int(sin^(-1)x)/(sqrt(1-x))dx

    Evaluate: inte^(sin^-1x)/sqrt (1-x^2)dx

    Evaluate: int(1+sin x)/(sqrt(x-cos x))dx