Home
Class 12
MATHS
Evaluate: intxcosx\ dx...

Evaluate: `intxcosx\ dx`

Text Solution

Verified by Experts

Given,`intxcosx\ dx`
Let `u=x`
`=>du=dx`
and `dv=cosxdx`
`=>v=sinx`
Integrating by parts, we get
`=xsinx−intsinxdx`
`=xsinx−(−cosx)+c`
` =xsinx+cosx+c `
where `c` is the integration constant.
Promotional Banner

Topper's Solved these Questions

  • INCREASING AND DECREASING FUNCTION

    RD SHARMA|Exercise Solved Examples And Exercises|232 Videos
  • INVERSE TRIGONOMETRIC FUNCTION

    RD SHARMA|Exercise Solved Examples And Exercises|523 Videos

Similar Questions

Explore conceptually related problems

Evaluate: int dx

Evaluate: intxlogx\ dx

Evaluate: intxsinxcosx\ dx

Evaluate: intx^2sinx\ dx

Evaluate: intxsinx dx

Evaluate : intx log x dx

Evaluate: intx/(1+cosx)dx

Evaluate : int ( cosecx ) dx

Evaluate: int2^(x)dx