Home
Class 12
MATHS
Evaluate: int(x+1)e^xlog(x e^x)\ dx...

Evaluate: `int(x+1)e^xlog(x e^x)\ dx`

Text Solution

AI Generated Solution

To evaluate the integral \( I = \int (x + 1) e^x \log(x e^x) \, dx \), we will follow these steps: ### Step 1: Simplify the Logarithmic Expression First, we can simplify the logarithmic term: \[ \log(x e^x) = \log x + \log e^x = \log x + x \] Thus, we can rewrite the integral as: ...
Promotional Banner

Topper's Solved these Questions

  • INCREASING AND DECREASING FUNCTION

    RD SHARMA|Exercise Solved Examples And Exercises|232 Videos
  • INVERSE TRIGONOMETRIC FUNCTION

    RD SHARMA|Exercise Solved Examples And Exercises|523 Videos

Similar Questions

Explore conceptually related problems

Evaluate: int(1)/(e^(x)+e^(-x))dx

Evaluate int(x+1)/(x(xlog_(e)x))dx

Evaluate: int(1)/(e^(x)+1)dx

Evaluate: int(e^x-1)/(e^x+1)dx

"Evaluate : "int(dx)/(e^(x)+e^(-x))

Evaluate : int(1)/(e^(x)-1)dx

Evaluate: int(1)/(1+e^(-x))dx

Evaluate: int(1)/(1+e^(-x))dx

Evaluate: int e^(x)(log x+(1)/(x))dx

Evaluate int(x-1)/(x^(2))e^(x)dx