Home
Class 12
MATHS
Evaluate: int(e^(logx)+sinx)cosx\ dx...

Evaluate: `int(e^(logx)+sinx)cosx\ dx`

Text Solution

AI Generated Solution

To evaluate the integral \( I = \int (e^{\log x} + \sin x) \cos x \, dx \), we can break it down into manageable steps. ### Step 1: Simplify the Expression We start with the expression inside the integral: \[ e^{\log x} = x \] Thus, we can rewrite the integral as: ...
Promotional Banner

Topper's Solved these Questions

  • INCREASING AND DECREASING FUNCTION

    RD SHARMA|Exercise Solved Examples And Exercises|232 Videos
  • INVERSE TRIGONOMETRIC FUNCTION

    RD SHARMA|Exercise Solved Examples And Exercises|523 Videos

Similar Questions

Explore conceptually related problems

int(e^(logx)+sinx)cosxdx

int(e^(logx)+sinx).cos x dx=

Evaluate: int1/(cosx(sinx+2cosx))\ dx

Evaluate : int((x-sinx)/(1-cosx))dx .

Evaluate int(e^x(1+sinx))/(1+cosx)dx

Evaluate: inte^x(sinx+cosx)dx

Evaluate: int(sinx+cosx)/(sinx-cosx)dx

Evaluate int e^(x)((1-sinx)/(1-cosx))dx.

Evaluate: int1/(cosx-sinx)\ dx

inte^(x)(sinx+cosx)dx=?