Home
Class 12
MATHS
Evaluate: inte^x\ (tanx+logsecx)\ dx...

Evaluate: `inte^x\ (tanx+logsecx)\ dx`

Text Solution

AI Generated Solution

To evaluate the integral \( I = \int e^x \left( \tan x + \log(\sec x) \right) \, dx \), we can break it down into two parts: 1. \( I_1 = \int e^x \tan x \, dx \) 2. \( I_2 = \int e^x \log(\sec x) \, dx \) ### Step 1: Recognizing the Form We notice that the integrand can be expressed in the form \( e^x f(x) + e^x f'(x) \). Here, we can let: - \( f(x) = \log(\sec x) \) ...
Promotional Banner

Topper's Solved these Questions

  • INCREASING AND DECREASING FUNCTION

    RD SHARMA|Exercise Solved Examples And Exercises|232 Videos
  • INVERSE TRIGONOMETRIC FUNCTION

    RD SHARMA|Exercise Solved Examples And Exercises|523 Videos

Similar Questions

Explore conceptually related problems

Evaluate: inte^x(tanx-logcosx)dx

inte^x(tanx-logcosx)dx

Evaluate: int(1+tanx)/(x+logsecx)dx

int e^x(tanx +sec^2x)dx

Evaluate inte^x(tanx+sec^2x)dx

Evaluate: int1/(1-tanx)\ dx

Evaluate int (sec^2x+tanx )dx

int\ tanx\ dx

Evaluate : int (sec^2x/(1+tanx)dx)

Evaluate : int (sec^2x/(1+tanx)dx)