Home
Class 12
MATHS
Evaluate: int{1/(logx)-1/((logx)^2)}\ dx...

Evaluate: `int{1/(logx)-1/((logx)^2)}\ dx`

Text Solution

AI Generated Solution

To evaluate the integral \[ I = \int \left( \frac{1}{\log x} - \frac{1}{(\log x)^2} \right) dx, \] we can separate it into two integrals: ...
Promotional Banner

Topper's Solved these Questions

  • INCREASING AND DECREASING FUNCTION

    RD SHARMA|Exercise Solved Examples And Exercises|232 Videos
  • INVERSE TRIGONOMETRIC FUNCTION

    RD SHARMA|Exercise Solved Examples And Exercises|523 Videos

Similar Questions

Explore conceptually related problems

Evaluate int e^x(1/logx-1/(x(logx)^2)) dx

Evaluate: int(logx)/((1+logx)^2)\ dx

Evaluate : int[(1)/(logx)-(1)/((log x)^(2))]dx

Evaluate: int1/(xlogxlog(logx))dx

Evaluate int(logx)/((1+logx)^(2))dx .

Evaluate : int {log(logx)+(1)/((logx)^(2))}dx

Evaluate the following integrals: int{(1)/(logx)-(1)/((log)^(2))}dx

Evaluate : int(1)/(xlogxlog(logx))dx