Home
Class 12
MATHS
Evaluate: inte^x\ (tanx-logcosx)\ dx...

Evaluate: `inte^x\ (tanx-logcosx)\ dx`

Text Solution

AI Generated Solution

To evaluate the integral \( I = \int e^x \left( \tan x - \log \cos x \right) \, dx \), we can use the method of integration by parts and properties of derivatives. Let's break it down step by step. ### Step 1: Identify \( f(x) \) and \( f'(x) \) We want to express \( \tan x - \log \cos x \) in the form \( f'(x) + f(x) \). Let's choose: - \( f(x) = -\log \cos x \) Now, we need to find \( f'(x) \): ...
Promotional Banner

Topper's Solved these Questions

  • INCREASING AND DECREASING FUNCTION

    RD SHARMA|Exercise Solved Examples And Exercises|232 Videos
  • INVERSE TRIGONOMETRIC FUNCTION

    RD SHARMA|Exercise Solved Examples And Exercises|523 Videos

Similar Questions

Explore conceptually related problems

Evaluate: inte^x(tanx+logsecx)dx

inte^(x)[tanx-log(cosx)]dx=

inte^(x)(tanx+logsecx)dx=?

Evaluate inte^x(tanx+sec^2x)dx

Evaluate: int(1+tanx)/(x+logsecx)dx

int\ tanx\ dx

Evaluate : int (sec^2x/(1+tanx)dx)

Evaluate : int (sec^2x/(1+tanx)dx)

int((1-tanx)/(x+logcosx))dx

Evaluate: int(sqrt(tanx))dx