Home
Class 12
MATHS
Evaluate: inte^x\ (tan^(-1)x+1/(1+x^2))\...

Evaluate: `inte^x\ (tan^(-1)x+1/(1+x^2))\ dx`

Text Solution

AI Generated Solution

To evaluate the integral \( I = \int e^x \left( \tan^{-1} x + \frac{1}{1+x^2} \right) \, dx \), we can follow these steps: ### Step 1: Identify the function and its derivative We notice that the integrand consists of \( \tan^{-1} x \) and \( \frac{1}{1+x^2} \). The derivative of \( \tan^{-1} x \) is \( \frac{1}{1+x^2} \). Therefore, we can let: \[ f(x) = \tan^{-1} x \] Then, the derivative is: ...
Promotional Banner

Topper's Solved these Questions

  • INCREASING AND DECREASING FUNCTION

    RD SHARMA|Exercise Solved Examples And Exercises|232 Videos
  • INVERSE TRIGONOMETRIC FUNCTION

    RD SHARMA|Exercise Solved Examples And Exercises|523 Videos

Similar Questions

Explore conceptually related problems

Evaluate: inte^x(tan^-1x+1/(1+x^2))dx

Evaluate : int ((e^( tan^(-1)x) )/ (1+x^2)) dx

Evaluate: inte^(tan^-1x)(1+x/(1+x^2))dx

Evaluate: int(e^(tan^^)((-1)x))/(1+x^(2))dx

Evaluate int (x+tan^(-1)x)dx

inte^x(tan^-1x+1/(1+x^(2)))dx

Evaluate: int tan^(-1)((2x)/(1-x^(2)))dx

Evaluate: int(x tan^(-1)x^(2))/(1)dx

Evaluate: int(x^(2)tan^(-1)x)/(1+x^(2))dx

Evaluate : int (tan^(-1)x)^(4)/(1+x^2) dx