Home
Class 12
MATHS
Evaluate: int{tan(logx)+sec^2(logx)}\ dx...

Evaluate: `int{tan(logx)+sec^2(logx)}\ dx`

Text Solution

Verified by Experts

Let, `I=int{tan (log x)+sec ^{2}(log x)} d x`
` log x=z`
` Rightarrow x=e^z`
` Rightarrow d x=e^z d z`
` I=int(tan z+sec ^{2} z) e^{z} d z`
` f(z)=tan z ; f^{prime}(z)=sec ^{2} z `
We know that,
` int e^{x}{f(x)+f^{prime}(x)}=e^{x} f(x)+c I=x tan (log x)+c`
Promotional Banner

Topper's Solved these Questions

  • INCREASING AND DECREASING FUNCTION

    RD SHARMA|Exercise Solved Examples And Exercises|232 Videos
  • INVERSE TRIGONOMETRIC FUNCTION

    RD SHARMA|Exercise Solved Examples And Exercises|523 Videos

Similar Questions

Explore conceptually related problems

Evaluate int sin(logx)dx .

Evaluate : int(logx)^(2)dx .

Evaluate int dx/(x{1+(logx)^2}

Evaluate: int(logx)/((1+logx)^2)\ dx

Evaluate : int(1)/(xlogxlog(logx))dx

Evaluate : int(logx)/(x^(2))dx .

Evaluate int(logx)/((1+logx)^(2))dx .

Evaluate int logx dx

int(sec^2(logx))/xdx

int[sin(logx)+cos(logx)]dx