Home
Class 12
MATHS
Evaluate: inttan^(-1)xdx ....

Evaluate: `inttan^(-1)xdx` .

Text Solution

Verified by Experts

`int tan ^{-1} x cdot d x`
` =int tan ^{-1} x cdot int tan ^{-1} d x+c`
Apply Rule of integration by parts by taking `tan ^{-1} x` as the first function.
`=tan ^{-1} x x-int frac{1}{1+x^{2}} d x+c `
` =x tan ^{-1} x-frac{1}{2} int frac{2 x}{1+x^{2}} d x+c `
` =x tan ^{-1} x-frac{1}{2} log |1+x^{2}|+c `
` int tan ^{-1} x cdot d x=x tan ^{-1} x-frac{1}{2} log (1+x^{2})+c`
`
Promotional Banner

Topper's Solved these Questions

  • INCREASING AND DECREASING FUNCTION

    RD SHARMA|Exercise Solved Examples And Exercises|232 Videos
  • INVERSE TRIGONOMETRIC FUNCTION

    RD SHARMA|Exercise Solved Examples And Exercises|523 Videos

Similar Questions

Explore conceptually related problems

Evaluate: int tan^(-1)xdx

Evaluate : intxtan^(-1)xdx

Evaluate int xtan^(-1)xdx

Evaluate: int sin^(-1)xdx

Evaluate: int sin^(-1)xdx

Evaluate: inttan^-1xdx

Evaluate: int sec^(-1)xdx

Evaluate: int cos^(-1)xdx

inttan^(-1)xdx=….+C

Evaluate: inttan^(-1)x."ln"(1+x^(2))dx