Home
Class 12
MATHS
Evaluate: inte^xsin^2x\ dx...

Evaluate: `inte^xsin^2x\ dx`

Text Solution

AI Generated Solution

To evaluate the integral \( I = \int e^x \sin^2 x \, dx \), we can use the identity for \( \sin^2 x \) and integration by parts. Here’s a step-by-step solution: ### Step 1: Rewrite \(\sin^2 x\) We can use the trigonometric identity: \[ \sin^2 x = \frac{1 - \cos(2x)}{2} \] Thus, we rewrite the integral: ...
Promotional Banner

Topper's Solved these Questions

  • INCREASING AND DECREASING FUNCTION

    RD SHARMA|Exercise Solved Examples And Exercises|232 Videos
  • INVERSE TRIGONOMETRIC FUNCTION

    RD SHARMA|Exercise Solved Examples And Exercises|523 Videos

Similar Questions

Explore conceptually related problems

Evaluate int xsin^(2)x dx

Evaluate: int sin^(2)xsin2xdx

Evaluate: int2^(x)dx

Evaluate : int x sin x^(2)dx

Evaluate: int xe^(2x)dx

Evaluate int xsec^2x dx

Evaluate: inte^x/(e^x+2)dx

Evaluate int 2x dx

Evaluate- inte^(x^3)x^2dx

Evaluate : int(dx)/(1-sin^2x)