Home
Class 12
MATHS
Write a value of int(sec^2x)/((5+tanx)^4...

Write a value of `int(sec^2x)/((5+tanx)^4)\ dx`

Text Solution

Verified by Experts

Solution:
Let `\t=5+\tan \x \Rightarrow \dt=\sec ^2 \{xdx}`
I=`\int \frac{\sec ^{2} x d x}{(5+\tan x)^4}`
=`\int \frac{d t}{t^{4}}`
=`\int t^{-4} d t`
=`\frac{t^{-4+1}}{-4+1}+c `
=`\frac{t^{-3}}{-3}+c`
=`\frac{-1}{3 t^{3}}+c` where c is the constant of integration.
Promotional Banner

Topper's Solved these Questions

  • INCREASING AND DECREASING FUNCTION

    RD SHARMA|Exercise Solved Examples And Exercises|232 Videos
  • INVERSE TRIGONOMETRIC FUNCTION

    RD SHARMA|Exercise Solved Examples And Exercises|523 Videos

Similar Questions

Explore conceptually related problems

int(sec^2x)/(2+tanx)dx

int(sec^(2)x)/(sqrt(tanx))dx

int(sec^(2)x)/((1+tanx))dx

Evaluate : int (sec^2x/(1+tanx)dx)

Evaluate : int (sec^2x/(1+tanx)dx)

Evaluate int sec^2x/(1+tanx)^2dx

Evaluate: int(sec^(2)x)/(1+tanx)dx

Evaluate : int ( sec^2x ) / sqrt( tanx ) dx

Evaluate : int ( sec^2x ) / sqrt( tanx ) dx