Home
Class 12
MATHS
Evaluate: int((1+logx)^2)/x\ dx...

Evaluate: `int((1+logx)^2)/x\ dx`

Text Solution

Verified by Experts

Solution:
Let `t=1+\log x \Rightarrow d t=\frac{d x}{x}`
`I=\int \frac{(1+\log x)^{2}}{x} d x`
=`\int \{t}^{2} \{dt}`
=`\frac{t^{3}}{3}+c` where c is the constant of integration.
=`\frac{(1+\log x)^{3}}{3}+c` where `t=1+\log x`
Promotional Banner

Topper's Solved these Questions

  • INCREASING AND DECREASING FUNCTION

    RD SHARMA|Exercise Solved Examples And Exercises|232 Videos
  • INVERSE TRIGONOMETRIC FUNCTION

    RD SHARMA|Exercise Solved Examples And Exercises|523 Videos

Similar Questions

Explore conceptually related problems

Evaluate : int(logx)^(2)dx .

int((logx)^(2))/(x)dx.

Evaluate: int(logx)/((1+logx)^2)\ dx

Evaluate : int(logx)/(x^(2))dx .

Evaluate int logx dx

Evaluate: int(1+logx)^2/(1+logx^(x+1)+(logx^sqrt(x))^2)dx

Evaluate int_(1)^(2)(logx)/(x)dx

Evaluate int dx/(x{1+(logx)^2}

Evaluate int(logx)/((1+logx)^(2))dx .