Home
Class 12
MATHS
intsqrt(x/(1-x))\ dx is equal to sin^(-1...

`intsqrt(x/(1-x))\ dx` is equal to `sin^(-1)sqrt(x)+C` (b) `sin^(-1){sqrt(x)-sqrt(x(1-x))}+C` (c) `sin^(-1){sqrt(x(1-x))}+C` (d) `sin^(-1)sqrt(x)-sqrt(x(1-x))+C`

Promotional Banner

Similar Questions

Explore conceptually related problems

cos^(-1)sqrt(1-x)+sin^(-1)sqrt(1-x)=

sin^(-1)[x sqrt(1-x)-sqrt(x)sqrt(1-x^(2))]=

(d)/(dx)[sin^(-1)(x sqrt(1-x)-sqrt(x)sqrt(1-x^(2)))] is

int_(0)^(1)sin^(-1)(x sqrt(1-x)-sqrt(x)sqrt(1-x^(2)))dx

(sin^(-1)sqrt(x)-cos^(-1)sqrt(x))/(sin^(-1)sqrt(x)+cos^(-1)sqrt(x)),x in[0,1]

Evaluate: int(sin^(-1)sqrt(x)-cos^(-1)sqrt(x))/(sin^(-1)sqrt(x)+cos^(-1)sqrt(x))dx

Evaluate: int(sin^(-1)sqrt(x)-cos^(-1)sqrt(x))/(sin^(-1)sqrt(x)+cos^(-1)sqrt(x))dx

Find :int(sin^(-1)sqrt(x)-cos^(-1)sqrt(x))/(sin^(-1)sqrt(x)+cos^(-1)sqrt(x))dx,x in[0,1]

sin^(-1)[sqrt(x^(2)-x^(3))-sqrt(x-x^(3))]=..... a) sin^(-1)x+sin^(-1)sqrt(x) b) sin^(-1)x-sin^(-1)sqrt(x) c) sin^(-1)sqrt(x)-sin^(-1)x d) 2sin^(-1)x

Find (dy)/(dx), if y=sin^(-1)[x sqrt(1-x)-sqrt(x)sqrt(1-x^(2))]