Home
Class 12
MATHS
int(cos2x-cos2theta)/(cosx-costheta)\ dx...

`int(cos2x-cos2theta)/(cosx-costheta)\ dx` is equal to `2\ (sinx+xcostheta)+C` (b) `2\ (sinx-xcostheta)+C` (c) `2\ (sinx+2xcostheta)+C` (d) `2\ (sinx-2xcostheta)+C`

Text Solution

Verified by Experts

`I=∫(cos2x−cos2θ​)/(cosx−cosθ)dx`
`=∫(cos^2x−1−2cos^2θ+1)/(cosx−cosθ)​dx`
`=∫(2(cos^2x−cos^2θ))/(cosx−cosθ)​dx`
`=2∫((cosx−cosθ)(cosx+cosθ)​)/(cosx−cosθ)dx`
`=2∫(cosx+cosθ)dx`
`=2(sinx+xcosθ)+C `
Promotional Banner

Topper's Solved these Questions

  • INCREASING AND DECREASING FUNCTION

    RD SHARMA|Exercise Solved Examples And Exercises|232 Videos
  • INVERSE TRIGONOMETRIC FUNCTION

    RD SHARMA|Exercise Solved Examples And Exercises|523 Videos

Similar Questions

Explore conceptually related problems

int(cos2x)/((sinx+cosx)^(2))dx is equal to

int(cos2x)/(cosx-sinx)dx=

int(cos2x)/(sinx+cosx)dx=

int(sinx+2cosx)/(2sinx+cosx)dx

int(sinx+2cosx)/(2sinx+cosx)dx

int(dx)/(sinx-cosx+sqrt2) is equal to

int(xcostheta+1)/((x^(2)+2xcostheta+1)^((3)/(2)))dx is

int(2cosx-sinx)/(3+2sinx+cosx)dx

int(5cosx-4sinx+1/cos^2x)dx