Home
Class 12
MATHS
Evaluate: int1/(sqrt(x)+sqrt(x+1))\ dx...

Evaluate: `int1/(sqrt(x)+sqrt(x+1))\ dx`

Text Solution

AI Generated Solution

To evaluate the integral \( I = \int \frac{1}{\sqrt{x} + \sqrt{x+1}} \, dx \), we will follow these steps: ### Step 1: Rationalize the denominator We start by multiplying and dividing by the conjugate of the denominator: \[ I = \int \frac{1}{\sqrt{x} + \sqrt{x+1}} \cdot \frac{\sqrt{x+1} - \sqrt{x}}{\sqrt{x+1} - \sqrt{x}} \, dx \] ...
Promotional Banner

Topper's Solved these Questions

  • INCREASING AND DECREASING FUNCTION

    RD SHARMA|Exercise Solved Examples And Exercises|232 Videos
  • INVERSE TRIGONOMETRIC FUNCTION

    RD SHARMA|Exercise Solved Examples And Exercises|523 Videos

Similar Questions

Explore conceptually related problems

Evaluate: int(1)/(sqrt(x)+4sqrt(x))dx

int(1/sqrt(x)-sqrt(x))dx

int((1)/(sqrt(x))-sqrt(x))dx

Evaluate : int(1)/(sqrt(x+1)+sqrt(x+2))dx

Evaluate: int(1)/(sqrt(3x+4)-sqrt(3x+1))dx

Evaluate: int1/((x+1)sqrt(x))\ dx

Evaluate: int1/(sqrt((x-a)(x-b))\ )\ dx

int(sqrt(x)+1/sqrt(x))dx

Evaluate int_(1)^(5)sqrt(x-2)sqrt(x-1)dx .

Evaluate: (i) int(1)/(sqrt(x)(sqrt(x)+1))dx (ii) int tan2x tan3x tan5xdx