Home
Class 12
MATHS
Evaluate: intcosxcos2xcos3x\ dx...

Evaluate: `intcosxcos2xcos3x\ dx`

Text Solution

AI Generated Solution

To evaluate the integral \( I = \int \cos x \cos 2x \cos 3x \, dx \), we can use trigonometric identities to simplify the expression. Here’s a step-by-step solution: ### Step 1: Use the product-to-sum identities We start by using the product-to-sum identity for the first two cosine terms: \[ \cos A \cos B = \frac{1}{2} \left( \cos(A+B) + \cos(A-B) \right) \] ...
Promotional Banner

Topper's Solved these Questions

  • INCREASING AND DECREASING FUNCTION

    RD SHARMA|Exercise Solved Examples And Exercises|232 Videos
  • INVERSE TRIGONOMETRIC FUNCTION

    RD SHARMA|Exercise Solved Examples And Exercises|523 Videos

Similar Questions

Explore conceptually related problems

Evaluate : intcosxcos2xcos3xdx .

int cosx cos2xcos3x dx=

Evaluate inte^sinx/cos^2x(xcos^3x-sinx)dx

Evaluate intsin3xcos5x\ dx

Evaluate: intdx/(sin^3xcos^5x)

Evaluate: int(xcos^-1x)/sqrt (1-x^2)dx

Evaluate: int(sin2xcos2x)/(sqrt(9-cos^4 2x))\ dx

Evaluate the following integrals: intcos2xcos4xcos6xdx

Evaluate intsin^(3)xcos^(5)xdx (ii) intsin^(2)xcos^(4)xdx (iii) intsin^(-11//3)xcos^(-1//3)xdx

Evaluate : lim_(x to 0)(1-cosxcos2xcos3x)/(sin^(2)2x)