Home
Class 12
MATHS
Evaluate: int(sinx)/(cos^2x)\ dx...

Evaluate: `int(sinx)/(cos^2x)\ dx`

Text Solution

AI Generated Solution

To evaluate the integral \( I = \int \frac{\sin x}{\cos^2 x} \, dx \), we will use substitution and trigonometric identities. Let's go through the solution step by step. ### Step 1: Rewrite the Integral We start with the integral: \[ I = \int \frac{\sin x}{\cos^2 x} \, dx \] We can rewrite \(\frac{\sin x}{\cos^2 x}\) as \(\sin x \cdot \sec^2 x\). ...
Promotional Banner

Topper's Solved these Questions

  • INCREASING AND DECREASING FUNCTION

    RD SHARMA|Exercise Solved Examples And Exercises|232 Videos
  • INVERSE TRIGONOMETRIC FUNCTION

    RD SHARMA|Exercise Solved Examples And Exercises|523 Videos

Similar Questions

Explore conceptually related problems

int(sinx)/(1+cos^2x)dx

int(sinx)/(1+cos^2x)dx=

int(sinx)/(cos^(2)x)dx=

Evaluate : int(sinx)/(cos^(9//2)x)dx

Evaluate: (i) int(sinx)/(1+cos^2x)\ dx (ii) int(2x^3)/(4+x^8)\ dx

int(sinx)/((1+cos^(2)x))dx

Evaluate: int(sinx)/((cos^(2)x+1)(cos^(2)x+4))dx.

Evaluate : (i) int(sin4x)/(cos2x)dx (ii) int(sin4x)/(sinx)dx

int (sinx)/(1-cos x)dx

int sinx/(1-cos^2x)dx