Home
Class 12
MATHS
Evaluate: inttan^3xdx...

Evaluate: `inttan^3xdx`

Text Solution

Verified by Experts

Here `∫tan^3xdx`
=`∫tanx.tan^2xdx=∫tanx(sec^2x−1)dx`
=`∫tanx.sec^2xdx−∫tanxdx`
In the first integral, put u=tanx so that
`du/dx=sec^2x`
=`∫u.du−log∣secx∣+c=u^2/2​−log∣secx∣+c`
=`tan^2x/2​−log∣secx∣+c`
Promotional Banner

Topper's Solved these Questions

  • INCREASING AND DECREASING FUNCTION

    RD SHARMA|Exercise Solved Examples And Exercises|232 Videos
  • INVERSE TRIGONOMETRIC FUNCTION

    RD SHARMA|Exercise Solved Examples And Exercises|523 Videos

Similar Questions

Explore conceptually related problems

inttan^7xdx

inttan^2xdx

inttan^5xdx

inttan^5xdx

Evaluate: inttan^-1xdx

Evaluate: int tan^(3)xdx

Evaluate: int tan^(3)xdx

Evaluate: intxsin^3xdx

Evaluate inttan^4xdx

inttan^3xsecxdx=