Home
Class 12
MATHS
Evaluate: inttan^4x dx...

Evaluate: `inttan^4x dx`

Text Solution

Verified by Experts

Given,`∫tan^4xdx`
=`∫tan^2tan^2xdx`
=`∫(sec^2x−1)tan^2xdx`
=`∫(sec^2xtan^2x−tan^2x)dx`
=`∫[sec^2xtan^2x−(sec^2x−1)]dx`
=`∫(sec^2xtan^2x−sec^2x+1)dx`
=`∫sec^2xtan^2xdx−∫sec^2xdx+∫1dx`
Putting `tanx=t`
...
Promotional Banner

Topper's Solved these Questions

  • INCREASING AND DECREASING FUNCTION

    RD SHARMA|Exercise Solved Examples And Exercises|232 Videos
  • INVERSE TRIGONOMETRIC FUNCTION

    RD SHARMA|Exercise Solved Examples And Exercises|523 Videos

Similar Questions

Explore conceptually related problems

Evaluate inttan^4xdx

Evaluate: inttan^-1xdx

Evaluate inttan^(2)xdx (ii) inte^(x)(cosx-sinx)dx (iii) int3x^(1//2)(1+x^(3//2))dx (iv) intsin3xcos2xdx

Evaluate: inttan^3 2x.sec2xdx

Evaluate: int tan^8x sec^4x dx

Evaluate: inttan^(-1)(x/a)dx .

Evaluate: inttan^(-1)x."ln"(1+x^(2))dx

Evaluate: inttan(pi/4-x)/(cos^2xsqrt(tan^3x+tan^2x+tanx))dx

inttan^(2)x" " dx=

inttan^4 xsec^2xdx